CHAPTER

Applications of Integrals 2

c

Recap Notes

INTRODUCTION

In geometry, we have learnt formulae to calculate areas of various geometrical figures. Such formulae of elementary geometry allow us to calculate areas of many simple figures. However, they are inadequate for calculating the areas enclosed by curves. For that we shall need some concepts of integral calculus.

Area Under Simple Curves

 \triangleright Area of shaded portion, as shown in figure, is given by

 \triangleright Area of shaded portion, as shown in figure, is given by

$$
A = \int_{a}^{b} f(y) dy
$$

 \triangleright Area of shaded portion, as shown in figure, is given by

- *a c* \triangleright The area of a region bounded by $y^2 = 4ax$ and $x^2 = 4by$ is $\frac{16}{1}$ 3 *ab* sq. units.
- \triangleright The area of a region bounded by $y^2 = 4ax$ and $y = mx$ is $\frac{8}{x}$ 3 2 3 *a m* sq. units.
- \triangleright The area of a region bounded by $y^2 = 4ax$ and its latus rectum is $\frac{8}{4}$ 3 $\frac{a^2}{a}$ sq. units.
- h The area of a region bounded by one arc of sin*ax* or cos*ax* and *x*-axis is $\frac{2}{a}$ sq. units.
- Area of region bounded by an ellipse $\frac{x}{x}$ *a y b* 2 2 Area of region bounded by an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
is πab sq. units.
- \triangleright The area of a region bounded by $y = ax^2 + bx + c$ and

$$
x\text{-axis is } \frac{(b^2 - 4ac)^{\frac{3}{2}}}{6a^2} \text{ sq. units.}
$$

Practice Time

OBJECTIVE TYPE QUESTIONS

Multiple Choice Questions (MCQs)

1. The area bounded by the curve $y = x^2 + 4x + 5$, the axes of coordinates and minimum ordinate is (a) $3\frac{2}{3}$ sq. units (b) $4\frac{2}{3}$ sq. units (c) $5\frac{2}{3}$ sq. units (d) none of these ³
2. Area of the ellipse $\frac{x}{x}$ *a y b* 2 2 2 $+\frac{y}{h^2} = 1$ is (a) $4\pi ab$ sq. units (b) $2\pi ab$ sq. units (c) πab sq. units (d) $\frac{\pi ab}{2}$ sq. units **3.** The area bounded by the curve $2x^2 + y^2 = 2$ is (a) π sq. units (b) $\sqrt{2}\pi$ sq. units (c) π 2 (d) 2π sq. units **4.** Area enclosed by the circle $x^2 + y^2 = a^2$ is equal to
(a) $2\pi a^2$ sq. units (b) πa^2 sq. units (c) $2\pi a$ sq. units (d) πa sq. units **5.** Area bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ is (a) 6π sq. units (b) 3π sq. units (c) 12π sq. units (d) none of these **6.** The area enclosed between the curve $x^2 + y^2 = 16$ and the coordinate axes in the first quadrant is (a) 4π sq. units (b) 3π sq. units (c) 2π sq. units (d) π sq. units **7.** The area enclosed by the curve $\frac{x^2}{x^2} + \frac{y^2}{x^2}$ $\frac{x}{25} + \frac{y}{9} = 1$ is (a) 10π sq. units (b) 15π sq. units (c) 5π sq. units (d) 4π sq. units **8.** The area bounded by the curve $y = f(x)$, the *x*-axis and $x = 1$ and $x = b$ is $(b - 1)$ sin $(3b + 4)$. Then, *f*(*x*) is (a) $(x-1) \cos(3x+4)$ (b) $\sin (3x + 4)$ (c) $\sin(3x+4) + 3(x-1)\cos(3x+4)$ (d) none of these **9.** The area of the region bounded by the parabola $y = x^2 + 1$ and the straight line $x + y = 3$ is given by (a) $\frac{45}{7}$ sq. units (b) $\frac{25}{4}$ sq. units (c) $\frac{5}{18}$ sq. units (d) $\frac{9}{2}$ sq. units **10.** The area enclosed between the curve $y^2 = 4x$ and the line $y = x$ is (a) $\frac{8}{5}$ 3 sq. units (b) $\frac{4}{3}$ sq. units (c) $\frac{2}{ }$ 3 sq. units (d) $\frac{1}{2}$ 2 sq. units **11.** The area bounded by the lines $y = |x-2|, x=1$, $x = 3$ and the *x*- axis is (a) 1 sq. unit (b) 2 sq. units (c) 3 sq. units (d) 4 sq. units **12.** Area of the region bounded by the curve $y = x^2$ and the line $y = 4$ is (a) 11 3 sq. units (b) $\frac{32}{3}$ sq. units (c) $\frac{43}{3}$ sq. units (d) $\frac{47}{3}$ sq. units **13.** Area lying between the parabola $y^2 = 4x$ and its latus rectum is (a) $\frac{1}{2}$ 3 sq. units (b) $\frac{2}{x}$ 3 sq. units (c) $\frac{5}{3}$ sq. units (d) $\frac{8}{3}$ sq. units **14.** The area bounded by the curve $y^2 = x$, line

 $y = 4$ and *y*-axis is

- (a) $\frac{16}{3}$ sq. units (b) $\frac{64}{3}$ sq. units
- (c) $7\sqrt{2}$ sq. units (d) none of these

15. The area bounded by the curve $x = 3y^2 - 9$ and the line $x = 0$, $y = 0$ and $y = 1$ is

- (a) 8 sq. units (b) $8/3$ sq. units
- (c) $3/8$ sq. unit (d) 3 sq. units

16. Find the area above *x*-axis, bounded by the curves $y = 2^{kx}$, $x = 0$ and $x = 2$.

(a)
$$
\frac{4^k - 1}{k \log_e 2}
$$
 (b) $\frac{2^k - 1}{2 \log_e 2}$
(c) $\frac{3 - k}{k \log_e 2}$ (d) $\frac{-1 + 3^k}{2 \log_e 2}$

17. Find the area enclosed by the parabola $y^2 = x$ and the line $y + x = 2$ and the *x*-axis.

(a) $\frac{5}{6}$ sq. units (b) $\frac{7}{6}$ sq. units (c) $\frac{6}{7}$ sq. units (d) $\frac{4}{7}$ sq. units

18. The area bounded by the curve $x^2 + y^2 = 1$ in first quadrant is

(a) $\frac{\pi}{4}$ sq. units $\frac{\pi}{4}$ sq. units (b) $\frac{\pi}{2}$ sq. units (c) $\frac{\pi}{3}$ sq. units (d) $\frac{\pi}{6}$ (d) $\frac{\pi}{6}$ sq. units

19. Area bounded by the curve $y = \cos x$ between

- $x = 0$ and $x = \frac{3\pi}{2}$ is
- (a) 1 sq. unit (b) 2 sq. units (c) 3 sq. units (d) 4 sq. units

20. Area of the region bounded by the curve $y = \tan x$, line $x = \frac{\pi}{4}$ and the *x*-axis is

- (a) $\log 2$ sq. units $\frac{1}{2}$ log 2 sq. units
- (c) $\frac{1}{3}$ log 2 sq. units (d) 5 log 2 sq. units
- **21.** The area bounded by the curve $y = \sec^2 x$, $y = 0$ and $|x| = \frac{\pi}{2}$ $\frac{\pi}{3}$ is
- (a) $\sqrt{3}$ sq. units (b) $\sqrt{2}$ sq. units
- (c) $2\sqrt{3}$ sq. units (d) none of these

22. The area bounded by the curve $x^2 = 4y + 4$ and line $3x + 4y = 0$ is

(a) $\frac{25}{1}$ 4 sq. units (b) $\frac{125}{8}$ sq. units (c) $\frac{125}{2}$ 16 sq. units (d) $\frac{125}{24}$ sq. units

23. The area bounded by the *x*-axis, the curve $y = f(x)$ and the lines $x = 1$, $x = b$ is equal to $\sqrt{b^2 + 1} - \sqrt{2}$ for all *b* > 1, then *f*(*x*) is

(a) $\sqrt{x-1}$ (b) $\sqrt{x+1}$ (c) $\sqrt{x^2+1}$ (d) $\sqrt{x^2+1}$

24. The area (in sq. units) enclosed between the graph of $y = x^3$ and the lines $x = 0$, $y = 1$, $y = 8$ is

- (a) $\frac{45}{4}$ (b) 14
- (c) 7 (d) none of these
- **25.** The area of the region bounded by the curve $y = \sqrt{16-x^2}$ and *x*-axis is (a) 8π sq. units (b) 20π sq. units
- (c) 16π sq. units (d) 256π sq. units

26. Area of the region bounded by the curve $y = \cos x$ between $x = 0$ and $x = \pi$ is

- (a) 2 sq. units (b) 4 sq. units
- (c) 3 sq. units (d) 1 sq. unit

27. The area of the region bounded by parabola $y^2 = x$ and the straight line $2y = x$ is

(a) $\frac{4}{ }$ 3 (b) 1 sq. unit (c) $\frac{2}{5}$ 3 sq. unit (d) $\frac{1}{3}$ sq. unit

28. The area of the region bounded by the curve $y = \sin x$ between the ordinates $x = 0$, $x = \frac{\pi}{2}$ and the *x*-axis is (a) 2 sq. units (b) 4 sq. units (c) 3 sq. units (d) 1 sq. unit **29.** The area of the region bounded by the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is (a) 20π sq. units (b) $20\pi^2$ sq. units (c) $16\pi^2$ sq. units (d) 25π sq. units **30.** The area of the region bounded by the circle

 $x^2 + y^2 = 1$ is

- (a) 2π sq. units (b) π sq. units
- (c) 3π sq. units (d) 4π sq. units

Case Based MCQs

Case I : Read the following passage and answer the questions from 31 to 35.

In a classroom, teacher explains the properties of a particular curve by saying that this particular curve has beautiful up and downs. It starts at 1 and heads down until π radian, and then heads up again and closely related to sine function and both follow each other, exactly $\frac{\pi}{2}$ radians apart as shown in figure.

31. Name the curve, about which teacher explained in the classroom.

- (a) cosine (b) sine
- (c) tangent (d) cotangent

32. Area of curve explained in the passage from

$$
0 \text{ to } \frac{\pi}{2} \text{ is}
$$

(a)
$$
\frac{1}{3}
$$
 sq. unit (b) $\frac{1}{2}$ sq. unit

(c) 1 sq. unit (d) 2 sq. units

33. Area of curve discussed in classroom from $\frac{\pi}{2}$ to $\frac{3\pi}{2}$ is

$$
\frac{1}{2} \text{ to } \frac{1}{2}
$$

(a) -2 sq. units (b) 2 sq. units (c) 3 sq. units (d) -3 sq. units

34. Area of curve discussed in classroom from 3 to 2π is

2

(c) 3 sq. units (d) 4 sq. units

35. Area of explained curve from 0 to 2π is

- (a) 1 sq. unit (b) 2 sq. units
- (c) 3 sq. units (d) 4 sq. units

Case II : Read the following passage and answer the questions from 36 to 40.

Location of three houses of a society is represented by the points $A(-1, 0)$, $B(1, 3)$ and $C(3, 2)$ as shown in figure.

36. Equation of line *AB* is

37. Equation of line *BC* is

(a)
$$
y = \frac{1}{2}x - \frac{7}{2}
$$

\n(b) $y = \frac{3}{2}x - \frac{7}{2}$
\n(c) $y = \frac{-1}{2}x + \frac{7}{2}$
\n(d) $y = \frac{3}{2}x + \frac{7}{2}$

- **38.** Area of region *ABCD* is
- (a) 2 sq. units (b) 4 sq. units
- (c) 6 sq. units (d) 8 sq. units
- **39.** Area of $\triangle ADC$ is
- (a) 4 sq. units (b) 8 sq. units
- (c) 16 sq. units (d) 32 sq. units
- **40.** Area of D*ABC* is
- (a) 3 sq. units (b) 4 sq. units
- (c) 5 sq. units (d) 6 sq. units

Case III : Read the following passage and answer the questions from 41 to 45.

Ajay cut two circular pieces of cardboard and placed one upon other as shown in figure. One of the circle represents the equation $(x - 1)^2 + y^2 = 1$, while other circle represents the equation $x^2 + y^2 = 1$.

41. Both the circular pieces of cardboard meet each other at

(a)
$$
x = 1
$$
 (b) $x = \frac{1}{2}$ (c) $x = \frac{1}{3}$ (d) $x = \frac{1}{4}$

42. Graph of given two curves can be drawn as

43. Value of $\int_{1}^{1/2} \sqrt{1-(x-1)^2} dx$ $\mathbf{0}$ $\int \sqrt{1-(x-1)}$ / $(x-1)^2 dx$ is (a) $\frac{\pi}{ }$ 6 $-\frac{\sqrt{3}}{8}$ (b) $\frac{\pi}{6}$ 3 8 + (c) $\frac{\pi}{2}$ 2 3 4 $+\frac{\sqrt{3}}{4}$ (d) $\frac{\pi}{2}$ 2 $-\frac{\sqrt{3}}{4}$ **44.** Value of $\int_1^1 \sqrt{1-x^2} dx$ $1/2$ $\int \sqrt{1-x^2} dx$ is / (a) $\frac{\pi}{2}$ 2 3 4 $+\frac{\sqrt{3}}{4}$ (b) $\frac{\pi}{4}$ 6 3 8 + (c) $\frac{\pi}{2}$ 6 $-\frac{\sqrt{3}}{8}$ (d) $\frac{\pi}{2}$ 2 $-\frac{\sqrt{3}}{4}$ **45.** Area of hidden portion of lower circle is (a) $\left(\frac{2}{2} \right)$ 3 3 2 $\left(\frac{2\pi}{3} + \frac{\sqrt{3}}{2}\right)$ sq. units (b) $\left(\frac{\pi}{3} - \frac{\sqrt{3}}{8}\right)$ sq. units

(c)
$$
\left(\frac{\pi}{3} + \frac{\sqrt{3}}{8}\right)
$$
 sq. units
(d) $\left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$ sq. units

(d) None of these

Assertion & Reasoning Based MCQs

Directions (Q. 46-50) : In these questions, a statement of Assertion is followed by a statement of Reason is given. Choose the correct answer out of the following choices :

- (a) Assertion and Reason both are correct statements and Reason is the correct explanation of Assertion.
- (b) Assertion and Reason both are correct statements but Reason is not the correct explanation of Assertion.
- (c) Assertion is correct statement but Reason is wrong statement.
- (d) Assertion is wrong statement but Reason is correct statement.

46. Assertion : The area of the region bounded by the curve $y^2 = 4x$ and the line $x = 3$ is $8\sqrt{3}$ sq. units.

Reason : The area of the region bounded by the curve $x^2 = 4y$ and the line $x = 4y - 2$ is $\frac{9}{x}$ sq. units. 8

47. Assertion : The area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line *x y* $\frac{x}{3} + \frac{y}{2} = 1$ is $\frac{3}{2}(\pi - 2)$ sq. units.

Reason : Formula to calculate the area of the smaller region bounded by the ellipse *^x a y b* 2 2 2 $+\frac{y}{h^2} = 1$ and the line $\frac{x}{a}$ *y* $+\frac{y}{b} = 1$ is $\frac{ab}{4}(\pi - 2)$ sq. units.

48. Assertion : The area bounded by the parabola $y^2 = 4ax$ and the line $x = a$ and $x = 4a$ is 56 $rac{3a^2}{3}$ sq. units.

Reason : The area bounded by the curves $y = 3x$ and $y = x^2$ is 9.5 sq. units.

49. Assertion : The area bounded by the curves $y^2 =$ $4a^2(x-1)$ and lines $x = 1$ and $y = 4a$ is $\frac{8}{x}$ 3 $\frac{a}{a}$ sq. units. **Reason :** The area enclosed between the parabola $y = x^2 - x + 2$ and the line $y = x + 2$ is $\frac{4}{3}$ sq. units.

50. Assertion : The area bounded by the curve $y = 2\cos x$ and the *x*-axis from $x = 0$ to $x = 2\pi$ is 8 sq. units.

Reason : The area bounded by the curve $y = \sin x$ between $x = \pi$ and $x = 2\pi$ is 4 sq. units.

SUBJECTIVE TYPE QUESTIONS

Very Short Answer Type Questions (VSA)

- **1.** Find the area between the curve $y = 4 + 3x - x^2$ and *x*-axis.
- 2. Find the area of the ellipse $\frac{x^2}{4^2} + \frac{y}{9}$ 2 $\frac{x}{4^2} + \frac{y}{9^2} = 1.$

3. Find the area of the region bounded by $y = |x|, x \leq 5$ in the first quadrant.

4. Find the area of the smaller region bounded by $x^2 + y^2 = 9$ and the line $x = 1$.

5. Find the area of the region bounded by the curve $y = x + 1$ and the lines $x = 2$ and $x = 3$.

6. Find the area of the region bounded by the curve $x = 2y + 3$ and the lines $y = 1$ and $y = -1$.

Short Answer Type Questions (SA-I)

11. Find the area bounded by the lines $y = ||x| - 1$ and the *x*-axis.

12. Find the area of the region bounded by the curve $y^2 = x$ and the lines $x = 1$, $x = 4$ and the *x*-axis.

13. Find the area of the region bounded by $y^2 = 9x$, $x = 2$, $x = 4$ and the *x*-axis in the first quadrant.

14. If $y = 2 \sin x + \sin 2x$ for $0 \le x \le 2\pi$, then find the area enclosed by the curve and *x*-axis.

15. Find the area of triangle whose two vertices formed from the *x*-axis and line $y = 3 - |x|$.

Short Answer Type Questions (SA-II)

21. Find the area of region bounded by $y = \sqrt{x}$

7. Find the area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines $x = 0$ and $x = 2$.

8. Using integration, find the area of the region enclosed by the curves $y = \log x$, *x*-axis and ordinates $x = 1$, $x = 2$.

9. Find the area bounded by the curves $y = \sin x$, the line $x = 0$ and the line $x = 2\pi$.

10. Find the area bounded by the curve $y^2 = 9x$ and the lines $x = 1$, $x = 4$ and $y = 0$ in the first quadrant.

16. Find the area bounded by the curve $y = x|x|$, *x*-axis and the lines $x = -3$ and $x = 3$.

17. Find the area of region bounded by the curve $y^2 = 4x$ and the lines $x = 2$, $x = 4$ and the *x*-axis.

18. Find the area of the region bounded by the curve $y = \sqrt{4-x^2}$ and *x*-axis.

19. Using integration, find the area of region bounded between the line *x =* 2 and the parabola $y^2 = 8x$.

20. Draw the region lying in first quadrant and bounded by $y = 9x^2$, $x = 0$, $y = 1$ and $y = 4$. Also, find the area of region using integration.

22. Draw the graph of curve $y = |x + 1|$. Hence, evaluate $\int |x+1| dx$. $\int_{-4}^{4} |x + 1|$ 2

and $y = x$.

23. Find the area of the region bounded by the curve $y = \sqrt{1 - x^2}$, line $y = x$ and the positive *x*-axis. **24.** Find the area of the region in the first quadrant enclosed by the *x*-axis, the line $y = x$ and the circle $x^2 + y^2 = 32$.

25. Find the area bounded by the ellipse *x a y b* 2 2 2 $+\frac{y}{h^2}$ = 1 and the ordinates $x = ae$ and $x = 0$,

where $b^2 = a^2(1 - e^2)$ and $e < 1$.

26. Find the area of the region bounded by the parabola $y^2 = 2x + 1$ and the line $x - y - 1 = 0$.

27. Find the area of smaller region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the line $\frac{x}{4} + \frac{y}{3} = 1$.

28. Find the area bounded by the curve $y = 2x - x^2$ and the straight line $y = -x$.

29. *AOB* is a positive quadrant of the ellipse *x a y b* 2 2 2 $+\frac{y}{b^2}$ = 1, where *OA* = *a*, *OB* = *b*. Find the

Long Answer Type Questions (LA)

36. Find the area bounded by lines $y = 4x + 5$, $y = 5 - x$ and $4y = x + 5$.

37. Using integration, find the area of the region bounded by the curves :

 $y = |x + 1| + 1$, $x = -3$, $x = 3$ and $y = 0$.

area between the arc *AB* and chord *AB* of the ellipse.

30. Find the area of the triangle formed by the tangent and normal at the point $(1, \sqrt{3})$ on the circle $x^2 + y^2 = 4$ and the *x*-axis.

31. Draw the region bounded by $y = 2x - x^2$ and *x-*axis and find its area using integration.

32. Determine the area under the curve $y = \sqrt{a^2 - x^2}$ included between the lines $x = 0$ and $x = a$.

33. Find the area of the region bounded by $y = |x - 1|$ and $y = 1$.

34. If the area bounded the curve $y^2 = 16x$ and line $y = mx$ is $\frac{2}{3}$, then find the value of *m*.

35. Find the area enclosed between the parabola $4y = 3x^2$ and the straight line $3x - 2y + 12 = 0$.

38. Using integration, find the area bounded by the curve $x^2 = 4y$ and the line $x = 4y - 2$.

39. Find the area of the region bounded by the parabola $y = x^2$ and $y = |x|$.

40. Find the area bounded by the circle $x^2 + y^2 = 16$ and the line $\sqrt{3}y = x$ in the first quadrant, using integration.

ANSWERS

OBJECTIVE TYPE QUESTIONS

- **1. (b)**: We have, $y = x^2 + 4x + 5 = (x + 2)^2 + 1$
- \therefore Required area = $(x^2 + 4x +$ $\int_{-2}^{2} (x^2 + 4x + 5) dx$ 0 $4x + 5$

2. (c) : Total area, $A = 4 \times$ Area in first quadrant

Here, $a = 1$ and $b = \sqrt{2}$ $=\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-2+\frac{8}{3}\right)=$ 1 $\frac{1}{3}$ – $\left(-4-2+\frac{8}{3}\right)$ $\frac{9}{2}$ sq. units 2 2 \therefore Area bounded by the ellipse $\frac{x}{a}$ *y* $+\frac{9}{h^2} = 1$ is πab 2 *b* **10.** (a) **:** We have, $y^2 = 4x$...(i) \therefore Required area = $\pi \sqrt{2}$ sq. units. and $y = x$...(ii) **4. (b)**: We have, $x^2 + y^2 = a^2$, which is a circle with \therefore Required area centre (0, 0) and radius *a*. $=\int_{0}^{4}(\sqrt{4x}-x)dx=\int_{0}^{4}(2x^{1/2}-x)dx$ Required area $= 4 \times$ Area in the first quadrant $(x-x)dx = (2x^{1/2} - x) dx$ *a* 0 0 $= 4 \int \sqrt{a^2 - x^2} dx$ $x^2 + y^2 = a^2$ 4 $x^{3/2}$ x^2 $\Big]_0^4$ -4 $(4^{3/2})$ 4^2 $3/2 \t 2^2$ $=\left(2\frac{x^{3/2}}{3/2}-\frac{x^2}{2}\right)_0^4=\frac{4}{3}(4^{3/2})-\frac{4^2}{2}$ $\sqrt[3]{2}$ $\left[2\frac{x^{3/2}}{3/2}-\frac{x^2}{2}\right]_0^{\infty}=\frac{4}{3}(4^{3/2}) \frac{4}{3}(4^{3/2}) - \frac{4^2}{2}$ 0 $\frac{x}{\sqrt{2}} - \frac{x}{2} \bigg|_0 = \frac{1}{3} (4^{3/2})$ *a* $=4\left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]^{a}$ x' $4\left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]$ $\frac{1}{2}$ a^2 \sin^{-1} 0 $\frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}$ sin *O* $=\frac{32}{3}-8=\frac{8}{3}$ sq. units $\mathbf{0}$ $= 4\left(\frac{a^2}{2}\right)\frac{\pi}{2} = \pi a^2$ sq. units *y*′ **11.** (a) **:** We have, $y = -x + 2 \forall x < 2$...(i) $y = x - 2 \forall x \ge 2$...(ii) **5.** (a) **:** Here $a^2 = 4$ and $b^2 = 9$. and $x = 1$, $x = 3$ 2 2 Since, area of ellipse $\frac{x}{a}$ *y* $+\frac{9}{h^2}$ = 1 is πab sq. units. 2 *b* \therefore Required area = $\pi \times 2 \times 3 = 6\pi$ sq. units. **6. (a) :** Given curve is a *y* circle with centre (0, 0) $(0, 4)$ and radius 4. *O* \therefore Required area *x*′ *x* $\sqrt{(4, 0)}$ $=\int_0^4 \sqrt{16-x^2}$ \ Required area *x dx* $x - \frac{x^2}{2}$ $\left[\frac{x^2}{2} - 2x \right]^3$ ² $\lceil x^2 \rceil$ 2 3 2 *x*) $dx + \int_{0}^{3} (x-2) dx = \int_{0}^{3} 2x \left[2x - \frac{x^2}{2}\right]_1^2 + \left[\frac{x^2}{2}\right]$ $2x - \frac{x^2}{2} \bigg]_1^2 + \bigg[\frac{x^2}{2} - 2x \bigg]$ 0 *y*′ $= \int (2 - x) \, dx + \int (x - 2)$ $=\left[\frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}\sin^{-1}\frac{x}{4}\right]_0^4=4$ 1 $\sin^{-1}\frac{\pi}{4}$ = 4π sq. units 1 2 0 $=\left[(4-2)-\left(2-\frac{1}{2}\right)\right]+ \left[\left(\frac{9}{2}-\frac{4}{2}\right)-\left(6-4\right)\right]$ 9 4 $\frac{1}{2}$ – (6 – 4) **7. (b) :** We have $\frac{x^2}{25} + \frac{y^2}{9} = 1$, which is an ellipse 2 $=\frac{1}{2}+\frac{1}{2}$ 1 $\frac{1}{2}$ =1 sq. unit Here, $a = 5$ and $b = 3$ 2 2 2 Since, area of region bounded by the ellipse $\frac{x}{x}$ *y* **12. (b) :** We have, $y = x^2$...(i) $+\frac{y}{h^2} = 1$ 2 *a b* and $y = 4$...(ii) is πab . \therefore Required area = π (5) (3) = 15 π sq. units *b* **8. (c) :** Given, $\int f(x) dx = (b-1)\sin(3b)$ $\int_{1}^{1} f(x) dx = (b-1)\sin(3b+4)$ *x*′ $(2, 0)$ *x* Area function = $\int f(x) dx = (x-1)\sin(3x+1)$ $(x) dx = (x - 1) \sin (3x + 4)$ *y*′ 1 \therefore Required area On differentiating, we get 2 $\int_{1}^{2} (4 - x^2) dx = \left[2 \left(4x - \frac{x^3}{2} \right) \right]_{1}^{2} = \frac{32}{2}$ sq. units $f(x) = \sin(3x + 4) + 3(x - 1) \cdot \cos(3x + 4)$ $=2\int_{0}^{2}(4-x^{2})dx=\left[2\left(4x-\frac{x^{3}}{3}\right)\right]_{0}^{2}=$ $\left| \int_{2}^{2} dx - \frac{1}{2} \int_{4}^{2} dx \right|^{2}$ 32 **9. (d)** : We have, $y = x^2 + 1$ \ldots (i) 3 0 0 and $x + y = 3$...(ii) **13. (d) :** We know that the area of region bounded by Solving (i) and (ii), we get $x^2 + x - 2 = 0 \implies x = -2, 1$ the parabola $y^2 = 4ax$ and its latus rectum is $\frac{8}{3}a^2$ sq. units. $v = x^2 + 1$ \therefore Required area $=\int_{0}^{1} \{3-x-(x^2+1)\}$ $y^2 = 4x$ $12)$ $x - (x^2 + 1)$ dx $(0, 1)$ − 2 $x - \frac{x^2}{2} - \frac{x^3}{2}$ *O* (1, 0) *x*′ 2 \sim 3 \overline{o} $(3, 0)$ $=\left[2x-\frac{x^2}{2}-\frac{x^3}{3}\right]_0^1$ *y*′ 2

2

18. (a) **:** We have, $x^2 + y^2 = 1$, which is a circle with centre $(0, 0)$ and radius = 1.

and $3x + 4y = 0$...(ii) Solving (i) and (ii), we get $x = -4$, 1

 \therefore Required area

$$
= \int_{-4}^{1} \left(-\frac{3x}{4} - \frac{x^2}{4} + 1 \right) dx
$$

= $-\frac{3}{8} (1 - 16) - \frac{1}{12} (1 + 64) + 5 = \frac{45}{8} - \frac{5}{12} = \frac{125}{24}$ sq. units
23. (d): We have, $\int_{1}^{b} f(x) dx = \sqrt{b^2 + 1} - \sqrt{2}$

On differentiating w.r.t. *b*, we get

$$
f(b) = \frac{2b}{2\sqrt{b^2 + 1}}
$$
 \Rightarrow $f(x) = \frac{x}{\sqrt{x^2 + 1}}$

24. (a) **:** Given curve is $y = x^3$ or $x = y^{1/3}$

 \therefore Required area

$$
= \int_{1}^{8} y^{1/3} dy = \left[\frac{y^{4/3}}{4/3} \right]_{1}^{8} = \frac{3}{4} \left[8^{4/3} - 1^{4/3} \right]
$$

$$
= \frac{3}{4} \times (16 - 1) = \frac{3}{4} \times 15 = \frac{45}{4} \text{ sq. units}
$$

25. (a) : We have, $y = \sqrt{16 - x^2} \Rightarrow y^2 = 16 - x^2$ \Rightarrow $x^2 + y^2 = 4^2$, which is a circle with centre (0, 0) and radius 4 units.

 \therefore Required area

$$
= \int_{-4}^{4} \sqrt{4^2 - x^2} \, dx = \left[\frac{x}{2} \sqrt{4^2 - x^2} + \frac{4^2}{2} \sin^{-1} \frac{x}{4} \right]_{-4}^{4}
$$

$$
\left[9x - 1(4) + 9x - 1(4) \right]_{-4}^{8\pi} = \frac{8\pi}{2} - \frac{8\pi}{2} = 12
$$

$$
= [8\sin^{-1}(1) - 8\sin^{-1}(-1)] = \frac{8\pi}{2} + \frac{8\pi}{2} = 8\pi \text{ sq. units}
$$

26. (a) : We have, $y = \cos x$

 \therefore Required area

$$
= 2 \int_{0}^{\pi/2} \cos x \, dx = 2[\sin x]_{0}^{\pi/2} = 2 \text{ sq. units}
$$

27. (a) : We have $2y = x$... **(i)**, a straight line, and $y^2 = x$...(ii), a parabola with vertex (0, 0).

Solving (i) and (ii), we get $x = 0$ and $x = 4$.

 \therefore Required area

28. (d): We have, $y = \sin x$, $0 \le x \le \frac{\pi}{2}$

 \therefore Required area

$$
= \int_{0}^{\pi/2} \sin x \, dx = [-\cos x]_{0}^{\pi/2} = -[0 - 1] = 1 \text{ sq. unit}
$$

29. (a) : Area of the region bounded by the ellipse x^2 y^2

$$
\frac{x}{a^2} + \frac{y}{b^2} = 1
$$
 is πab sq. units

- \therefore Required area = $\pi \times 5 \times 4 = 20\pi$ sq. units
- **30. (b) :** We have, $x^2 + y^2 = 1$, a circle with centre (0, 0) and radius 1.

 \therefore Required area $= 4 \int_{0}^{1} \sqrt{1-x^2} dx = 4 \left[\frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x \right]$ 0 $2 + \frac{1}{2}$ cin⁻¹ 0 $\frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\sin^{-1}x^2$ $=4\times\frac{1}{2}\times\frac{\pi}{2}=$ 2^{\degree} 2 $\frac{\pi}{2}$ = π sq. units **31. (a) :** Here, teacher explained about cosine curve. **32. (c) :** Required area = \int cos / *x dx* = $\left[\sin x\right]_0^{\pi/2} = \sin \frac{\pi}{2} - \sin 0 = 1 - 0 = 1$ sq. unit $\pi/2$ ∫ 2 **33. (b) :** Required area = \vert **|** $\cos x \, dx \vert = \vert \sin \theta \vert$ $=\left|\sin\frac{3\pi}{2}-\sin\frac{\pi}{2}\right| = |-1-1| = |-2|$ / $\int_{0}^{\pi/2} \cos x \, dx$ = $\left| \sin x \right]_{\pi/2}^{3\pi/2}$ $\int_{0}^{3\pi/2} \cos x dx = \left|\sin x\right]_{\pi/2}^{3\pi}$ $\int \cos x dx = \left| \sin x \right|_{\pi/2}^{3\pi/2}$ = 2 sq. units [Since, area can't be negative] **34.** (a) **:** Required area = $\int \cos x dx = \sin x$ / $x dx = \frac{\sin x}{3\pi}$ $3\pi/2$ 2 $\frac{2\pi}{3\pi/2}$ π π $\int \cos x dx = [\sin x]_{3\pi}^{2\pi}$ $=$ sin 2π – sin $\frac{3}{2}$ 2 $\frac{\pi}{\pi} = 0$ – (-1) = 1 sq. unit **35. (d) :** Required area $= |\cos x dx + | \cos x dx + | \cos x dx$ / / / / $xdx + |$ $\cos x dx + \cos x dx$ 0 2 2 $3\pi/2$ $3\pi/2$ $\pi/2$ $\left| \frac{3\pi}{2} \right|$ 2 π π π π $\int \cos x dx + \int \cos x dx + \int$ $= 1 + 2 + 1 = 4$ sq. units **36. (a) :** Equation of line *AB* is $y - 0 = \frac{3 - 0}{1 + 1}(x + 1) \implies y = \frac{3}{2}(x + 1)$ **37. (c) :** Equation of line *BC* is $y - 3 = \frac{2 - 3}{3 - 1}(x - 1)$ $\Rightarrow y = -\frac{1}{2}x + \frac{1}{2} + 3 \Rightarrow y = \frac{-1}{2}x +$ 2 1 $\frac{1}{2}+3$ \Rightarrow $y = \frac{-1}{2}$ 7 2 **38. (d) :** Area of region *ABCD* = Area of D*ABE* + Area of region *BCDE* $=\int_{1}^{1} \frac{3}{2}(x+1) dx + \int_{1}^{3} \left(\frac{-1}{2}x+\frac{7}{2}\right)$ − 7 $\frac{1}{1}2^{1/2}$ $\frac{1}{1}2^{1/2}$ 2 1 3 1 $(x+1) dx + \frac{1}{2}x + \frac{1}{2} dx$ $=\frac{3}{2}x^2 +$ $\left[\frac{x^2}{2} + x\right]_1^1 + \left[\frac{-x^2}{4} + \right]$ $\frac{3}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{1} + \left[\frac{-x^2}{4} + \frac{7}{2} x \right]$ 2 L 2 J_{-1} L 4 7 2 2 1 $1 \int x^2$ 1 $\left[\frac{x^2}{2} + x\right]^1 + \left[\frac{-x^2}{2} + \frac{7}{2}x\right]^3$ $=\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]+\left[\frac{-9}{4}+\frac{21}{2}+\frac{1}{4}-\frac{7}{2}\right]$ 3 2 1 $\left[\frac{1}{2}+1-\frac{1}{2}+1\right]+\left[\frac{-9}{4}\right]$ 21 2 1 4 7 2 $= 3 + 5 = 8$ sq. units **39.** (a) **:** Equation of line *AC* is $y - 0 = \frac{2 - 0}{2 + 1}$ $\frac{2-0}{3+1}(x+1)$ $\Rightarrow y = \frac{1}{2}(x +$ $\frac{1}{2}(x+1)$ \therefore Area of $\triangle ADC = \int_{1}^{1} \frac{1}{2}(x+1) dx = \left[\frac{x^2}{4} \right]$ 1 1^2 2^2 1^2 2^2 $\frac{3}{2}$ 1 $\sqrt{x^2}$ 1 $\int_{-1}^{3} \frac{1}{2} (x+1) dx = \left[\frac{x^2}{4} + \frac{1}{2} x \right]_{-1}^{3}$ $=\frac{9}{4} + \frac{3}{2} - \frac{1}{4} + \frac{1}{2} =$ 3 2 1 4 1 $\frac{1}{2}$ = 4 sq. units

40. (b) : Area of $\triangle ABC$ = Area of region *ABCD* – Area of $\triangle ACD = 8 - 4 = 4$ sq. units **41.** (**b**): We have, $(x - 1)^2 + y^2 = 1$

$$
\Rightarrow y = \sqrt{1 - (x - 1)^2} \qquad ...(i)
$$

Also,
$$
x^2 + y^2 = 1 \implies y = \sqrt{1 - x^2}
$$
 ...(ii)

From (i) and (ii), we get
\n
$$
\sqrt{1-(x-1)^2} = \sqrt{1-x^2}
$$
\n
$$
\Rightarrow (x-1)^2 = x^2 \Rightarrow 2x = 1 \Rightarrow x = \frac{1}{2}
$$
\n42. (c):
\n
$$
\sqrt[3]{x^3} = \sqrt[3]{x^2} = \sqrt[3]{x^3} = \sqrt[3]{x^2} = \sqrt[3]{x^3} = \sqrt[3]{x^2} = \sqrt[3]{x^2} = \sqrt[3]{x^3} = \sqrt[3]{x^2} = \sqrt[3]{x^2} = \sqrt[3]{x^2} = \sqrt[3]{(1,0)} = \sqrt[3]{x}
$$
\n43. (a):
$$
\int_0^{1/2} \sqrt{1-(x-1)^2} dx = \left[\frac{x-1}{2} \sqrt{1-(x-1)^2} + \frac{1}{2} \sin^{-1}(-\frac{1}{2}) - (-\frac{1}{2}) (0) - \frac{1}{2} \sin^{-1}(-1) \right]_0^{1/2} = \frac{1}{2} (\frac{1}{2}-1) \sqrt{1-\frac{1}{4}} + \frac{1}{2} \sin^{-1}(-\frac{1}{2}) - (-\frac{1}{2}) (0) - \frac{1}{2} \sin^{-1}(-1) = \left[\frac{-1}{4} \cdot \frac{\sqrt{3}}{2} - \frac{1}{2} \cdot \frac{\pi}{6} + 0 + \frac{1}{2} \cdot \frac{\pi}{2} \right] = \frac{-\sqrt{3}}{8} - \frac{\pi}{12} + \frac{\pi}{4} = \frac{\pi}{6} - \frac{\sqrt{3}}{8}
$$
\n44. (c):
$$
\int_{1/2}^{1/2} \sqrt{1-x^2} dx = \left[\frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1}(\frac{1}{2}) \right] = \frac{\pi}{4} - \frac{\sqrt{3}}{8} - \frac{\pi}{12} = \frac{\pi}{6} - \frac{\sqrt{3}}{8}
$$
\n45. (d): Required area
\n
$$
= 2 \left[\frac{1}{6} \sqrt{1-(x-1)^2} dx + \frac{1}{6} \sqrt{1-x^2} dx \right]
$$
\n
$$
= 2 \left[\frac{\pi}{6} - \frac{\sqrt{3}}{8} + \frac{\pi}{6} - \frac{\sqrt{3}}
$$

46. (b) : Assertion : We have, $y^2 = 4x$ and $x = 3$. \therefore Required area

Reason : We have, $x^2 = 4y \implies y = \frac{x^2}{4}$

and $x = 4y - 2 \implies y = \frac{x+2}{4}$.

The point of intersection of given curves are *A*(2, 1) and B $\Big|$ − $\left(-1,\frac{1}{4}\right)$ $\left(\frac{1}{4}\right)$.

41 2
$$
1 - 1
$$
 41 3 $1 - 1$
= $\frac{1}{4} \left(6 + \frac{3}{2} \right) - \frac{1}{12} \times 9 = \frac{15}{8} - \frac{3}{4} = \frac{9}{8}$ sq. units

47. (a) : Clearly, reason is correct statement. Now, we have, equation of ellipse

$$
\frac{x^2}{9} + \frac{y^2}{4} = 1 \text{ and line } \frac{x}{3} + \frac{y}{2} = 1
$$

∴ Here, $a = 3$, $b = 2$
∴ Required area = $\frac{ab}{4}(\pi - 2)$
= $\frac{3 \times 2}{4}(\pi - 2) = \frac{3}{2}(\pi - 2)$ sq. units

48. (c) : Assertion :

Required area = $2 \int \sqrt{4ax} dx = 4\sqrt{a}$ $2 \int_{a}^{4a} \sqrt{4ax} \ dx = 4\sqrt{a} \left[\frac{x^{3/2}}{3/2} \right]$ $\int \sqrt{4ax} \ dx = 4\sqrt{a} \left[\frac{x^{3/2}}{2\sqrt{a}} \right]^{4a}$ *a a* /

$$
= \frac{8}{3}\sqrt{a}(8a^{3/2} - a^{3/2}) = \frac{56a^2}{3}
$$
 sq. units

Reason : The intersection points of given curves are (0, 0) and (3, 9).

49. (d) : Assertion : On solving $y^2 = 4a^2(x - 1)$ and *y* = 4*a*, we get *x* = 5

Reason : Given, parabola $y = x^2 - x + 2$ and the line $y = x + 2$ intersects each other at points $(0, 2)$ and $(2, 4)$.

50. (c) : Assertion : We have, *y* = 2cos*x* Let us draw the graph of $2\cos x$ between 0 to 2π .

∴ Required area
\n
$$
= 2 \left[\sin x \frac{1}{2} \cos x \, dx \right] + \left[\frac{2x}{\pi/2} \sin x \frac{1}{2} \pi \right] + 2 \left[\sin 2\pi - \sin \frac{3\pi}{2} \right] + 2 \left[\frac{1}{\pi} \sqrt{9 - x^2} \, dx \right] + \left[\frac{2x}{\pi} \sin \frac{3\pi}{2} \right] + \left[\frac{2x}{\pi} \sin \frac
$$

O

 $\rightarrow x$

 $(3, 0)$

ሶ

 $x=0$ $\overline{\circ}$

 \overline{Y}

 $x = 2$
 $\rightarrow X$

 $\frac{y}{1}$

y′

 $\overrightarrow{x} = 1$

=
$$
2\log 2 - 1 = \log 4 - \log e
$$

\n= $\log(\frac{4}{e})$ sq. units
\n9. $\sqrt[n]{}$
\n $x \le \frac{1}{\sqrt[n]{}}$
\n $\frac{1}{\sqrt[n]{}}$
\nRequired area
\n= $\int_{0}^{\pi} (\sin x) dx + |\int_{0}^{2\pi} \sin x dx| = [-\cos x]_{0}^{\pi} + []-\cos x|_{\pi}^{2\pi}$
\n= $-\cos \pi + \cos \theta + [-\cos 2\pi + \cos \pi]$
\n= $1 + 1 + |-1 - 1| = 2 + |-2| = 2 + 2 = 4$ sq. units
\n10. We have, $y^2 = 9x$ and
\nlines $x = 1, x = 4$
\n \therefore Required area
\n= $\int_{1}^{4} 3\sqrt{x} dx = 3 \left[\frac{x^{3/2}}{3/2}\right]_{1}^{4}$
\n= $2(4^{3/2} - 1) = 2(8 - 1)$
\n= 14 sq. units
\n11. We have, $y = |x - 1|$, if $x \ge 0$
\n= $\begin{cases} (x - 1), \text{ if } x \ge 1 \\ -(x - 1), \text{ if } x < -1 \end{cases}$
\n= $\begin{cases} -(x - 1), \text{ if } x \ge -1 \\ -(x + 1), \text{ if } x < -1 \end{cases}$
\n \therefore Required area = $2 \int_{0}^{2} (1 - x) dx$
\n= $2 \left[x - \frac{x^2}{2}\right]_{0}^{1} = 2 \times \frac{1}{2} = 1$ sq. unit
\n12. Since the given parabola $y^2 = x$ is symmetrical about positive *x*-axis

$$
=\frac{2}{3}[4^{3/2}-1] = \frac{2}{3}[8-1] = \frac{14}{3}
$$
 sq. units.

13. The given parabola is $y^2 = 9x$. It is symmetrical about positive *x*-axis. *y*

 \therefore Required area = 2(Area of region shaded in first quadrant)

$$
=2\int_{0}^{3} x^{2} dx = 2 \times \left[\frac{x^{3}}{3}\right]_{0}^{3} = 2 \times 9 = 18 \text{ sq. units}
$$

17. Since the given curve represented by the equation $y^2 = 4x$ is a parabola

$$
y^{2} = 4x \text{ is a parabola}
$$

\n
$$
\therefore \text{ Required area}
$$

\n
$$
= \int_{2}^{4} ydx
$$

\n
$$
= \int_{2}^{4} 2\sqrt{x} dx = 2 \int_{2}^{4} x^{\frac{1}{2}} dx
$$

\n
$$
= 2 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{2}^{4} = \frac{4}{3} \left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}} \right] = \frac{4}{3} (8 - 2\sqrt{2}) \text{ sq. units}
$$

\n18. We have, $y = \sqrt{4 - x^{2}}$

 $\overrightarrow{A(2,0)}$ ^x

B(-2, 0) *O* $A(2, 0)$

 $|C(0, 2)|$

 \Rightarrow $x^2 + y^2 = 4$, which is *x*^{i} circle with centre (0, 0) and radius 2 units

$$
\therefore \text{ Required area} \quad y'
$$
\n
$$
= \int_{-2}^{2} \sqrt{4 - x^2} \, dx = \left[\frac{x}{2} \sqrt{4 - x^2} + 2 \sin^{-1} \left(\frac{x}{2} \right) \right]_{-2}^{2}
$$
\n
$$
= \left[\left\{ \frac{2}{2} \sqrt{4 - 4} + 2 \sin^{-1} \left(\frac{2}{2} \right) \right\} - \left\{ \frac{-2}{2} \sqrt{4 - (-2)^2} + 2 \sin^{-1} \left(\frac{-2}{2} \right) \right\} \right]
$$
\n
$$
= \left[1 \times 0 + 2 \times \frac{\pi}{2} + 1 \times 0 + 2 \times \frac{\pi}{2} \right] = 2\pi \text{ sq. units}
$$

19. The rough sketch of the parabola $y^2 = 8x$ and line $x = 2$ is as shown in the figure.

 $(2, 0)$

The area of shaded region = $2 \int_0^1 y \, dx = 2 \int_0^1 2\sqrt{2}$ 2 0 2 *y dx x dx*

$$
=4\sqrt{2}\int_{0}^{2}\sqrt{x}dx=4\sqrt{2}\left[\frac{2}{3}x^{3/2}\right]_{0}^{2}
$$

$$
=4\sqrt{2}\times\frac{2}{3}\left[2^{3/2}-0\right]=\frac{32}{3}\text{sq. units}
$$

20. The rough sketch of the curve $y = 9x^2$, $x = 0$, $y = 1$ and $y = 4$ is as shown in the figure.

The points of intersection of $y = \sqrt{x}$ and $y = x$ are *O*(0, 0) and *A*(1, 1). The required area of shaded region = $\int (y_2 - y_1) dx$ 0 1 where $y_2 = \sqrt{x}$ and $y_1 = x$ ∴ Required area = $\int_{0}^{x} (\sqrt{x} - x) dx$ 1 $=\frac{2x^{3/2}}{2}$ – L l $\overline{}$ J $\frac{2x^{3/2}}{3} - \frac{x^2}{2} \bigg|_0^{\frac{3}{2}} = \frac{2}{3} - \frac{1}{2} =$ 2 3 1 2 1 6 $3/2 \t x^2$ 0 $\left[\frac{x^{3/2}}{2} - \frac{x^2}{2}\right]_0^1 = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}$ sq.unit **22.** We have, $y = |x + 1|$

$$
\therefore y = \begin{cases}\n-(x+1), & x < -1 \\
(x+1), & x \ge -1\n\end{cases}
$$
\nThe graph of the curve $y = |x+1|$ is shown in figure.

 $(x+1), \quad x < -1$

$$
= -\left[\frac{x^2}{2} + x\right]_{-4}^{-1} + \left[\frac{x^2}{2} + x\right]_{-1}^{2}
$$

= -\left[\left(\frac{1}{2} - 1\right) - \left(\frac{16}{2} - 4\right)\right] + \left[\left(\frac{4}{2} + 2\right) - \left(\frac{1}{2} - 1\right)\right]
= -\left[-\frac{1}{2} - \frac{8}{2}\right] + \left[\frac{8}{2} + \frac{1}{2}\right] = \frac{9}{2} + \frac{9}{2} = 9

23. We have, curve $y = \sqrt{1 - x^2} \Rightarrow x^2 + y^2 = 1$ and line *y = x*

The rough sketch of the curve and line $y = x$ is shown in the figure.

The intersection points of line $y = x$ and $x^2 + y^2 = 1$ are

O(0, 0) and A
$$
\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$
.
\n∴ Required area = $\int_{0}^{\frac{1}{\sqrt{2}}} x dx + \int_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}} \sqrt{1-x^2} dx$
\n
$$
= \left[\frac{x^2}{2}\right]_{0}^{\frac{1}{\sqrt{2}}} + \left[\frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\sin^{-1}x\right]_{\frac{1}{\sqrt{2}}}^{\frac{1}{\sqrt{2}}}
$$
\n
$$
= \frac{1}{4} + \left[\left(0 + \frac{1}{2}\sin^{-1}1\right) - \left(\frac{1}{2\sqrt{2}}\sqrt{1 - \frac{1}{2}} + \frac{1}{2}\sin^{-1}\frac{1}{\sqrt{2}}\right)\right]
$$
\n
$$
= \frac{1}{4} + \left[\frac{1}{2} \times \frac{\pi}{2} - \frac{1}{4} - \frac{1}{2} \times \frac{\pi}{4}\right]
$$
\n
$$
= \frac{1}{4} + \frac{\pi}{4} - \frac{1}{4} - \frac{\pi}{8} = \frac{\pi}{8}
$$
 sq. unit
\n24. We have, $x^2 + y^2 = 32$...(i)
\nand $y = x$...(ii)

Solving (i) and (ii), the intersection points are

O(0, 0) and *A*(4, 4) in first quadrant.

The rough sketch of the circle $x^2 + y^2 = 32$ and line $y = x$ is shown in the figure.

$$
\therefore \text{ Required area} = \int_0^4 x dx + \int_4^{4\sqrt{2}} \sqrt{32 - x^2} dx
$$

$$
= \left[\frac{x^2}{2} \right]_0^4 + \left[\frac{x}{2} \sqrt{32 - x^2} + \frac{32}{2} \sin^{-1} \frac{x}{4\sqrt{2}} \right]_4^{4\sqrt{2}}
$$

$$
= 8 + \left[\left(0 + \frac{32}{2} \sin^{-1} \frac{4\sqrt{2}}{4\sqrt{2}} \right) - \left(\frac{4}{2} \sqrt{32 - 16} + \frac{32}{2} \sin^{-1} \frac{4}{4\sqrt{2}} \right) \right]
$$

$$
= 8 + \left[16 \sin^{-1} 1 - 8 - 16 \sin^{-1} \frac{1}{\sqrt{2}} \right]
$$

$$
= 8 + \frac{16\pi}{2} - 8 - 16 \left(\frac{\pi}{4} \right) = 4\pi \text{ sq. units}
$$

25. The rough sketch of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the lin

 a^2 *b* $+\frac{y}{h^2}$ = 1 and the line $x = 0$ and $x = ae$ is shown in the figure.

The required area of shaded region = 2) *y dx* ,

where
$$
y = \frac{b}{a} \sqrt{a^2 - x^2}
$$

\n
$$
\therefore \text{ Area} = \frac{2b}{a} \int_0^{ac} \sqrt{a^2 - x^2} dx
$$
\n
$$
= \frac{2b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^{ac}
$$
\n
$$
= \frac{2b}{2a} \left[ae \sqrt{a^2 - a^2 e^2} + a^2 \sin^{-1} \frac{ae}{a} \right] - 0
$$
\n
$$
= \frac{b}{a} \left[ae \sqrt{a^2 (1 - e^2)} + a^2 \sin^{-1} e \right]
$$
\n
$$
= ab \left[e \sqrt{1 - e^2} + \sin^{-1} e \right] \text{sq. units}
$$

26. The rough sketch of the parabola $y^2 = 2x + 1$ and line $x - y - 1 = 0$ is as shown in the figure.

The intersection points of $y^2 = 2x + 1$ and $x - y = 1$ are (0, –1) and (4, 3).

The required area of shaded region

The required area of shaded region
\n
$$
= \int_{-1}^{3} (x_1 - x_2) dy
$$
\nwhere $x_1 = y + 1$ and $x_2 = \frac{y^2 - 1}{2}$
\n
$$
\therefore \text{ Area} = \int_{-1}^{3} \left[(y + 1) - \left(\frac{y^2 - 1}{2} \right) \right] dy
$$
\n
$$
= \left[\frac{y^2}{2} + y - \frac{y^3}{6} + \frac{1}{2} y \right]_{-1}^{3} = \left[\frac{y^2}{2} - \frac{y^3}{6} + \frac{3y}{2} \right]_{-1}^{3}
$$
\n
$$
= \left(\frac{9}{2} - \frac{27}{6} + \frac{9}{2} \right) - \left(\frac{1}{2} + \frac{1}{6} - \frac{3}{2} \right) = \frac{16}{3} \text{ sq. units}
$$
\n27. The rough sketch of ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and the line $\frac{x}{4} + \frac{y}{3} = 1$ is shown in the figure.
\n
$$
\frac{x}{4} + \frac{y}{3} = 1
$$
 is shown in the figure.
\n
$$
\therefore \text{ Required area} = \int_{0}^{1} \left[\frac{3}{4} \sqrt{16 - x^2} - \frac{3}{4} (4 - x) \right] dx
$$
\n
$$
= \frac{3}{4} \left[\left(\sqrt{16 - x^2} - 4 + x \right) dx
$$
\n
$$
= \frac{3}{4} \left[\left(\sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \frac{x}{4} - 4x + \frac{x^2}{2} \right) \right]_{0}^{4}
$$
\n
$$
= \frac{3}{4} \left[0 + 8 \sin^{-1} 1 - 16 + 8 - 0 \right]
$$
\n
$$
= \frac{3}{4} \left[8 \times \frac{\pi}{2} - 8 \right] = \frac{3}{4} \left[4\pi - 8 \right] = 3(\pi - 2) \text{ sq. units}
$$

28. The curve $y = 2x - x^2$ represents a parabola opening downwards and cutting *x*-axis at (0, 0) and (2, 0). Clearly, $y = -x$ represents a line passing through the origin and making 135° with *x*-axis. A rough sketch of the two curves is shown in the figure. The region whose area is to be found is shaded in figure. The two curves intersect each other at (0, 0) and (3, –3).

.. Required area
\n
$$
\begin{aligned}\n&= \int_{0}^{3} \{2x - x^2 - (-x)\} dx \\
&= \int_{0}^{3} (3x - x^2) dx = \left[\frac{3}{2}x^2 - \frac{x^3}{3}\right]_{0}^{3} \\
&= \frac{27}{2} - \frac{27}{3} = \frac{9}{2} \text{ sq. units} \\
&= \int_{0}^{a} \left(\frac{b}{a}\sqrt{a^2 - x^2} - \frac{b}{a}(a - x)\right) dx \\
&= \int_{a}^{b} \left(\sqrt{a^2 - x^2} dx - \frac{b}{a}\right) (a - x) dx \\
&= \frac{b}{a} \int_{0}^{a} \sqrt{a^2 - x^2} dx - \frac{b}{a} \int_{0}^{a} (a - x) dx \\
&= \frac{b}{a} \left[\frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_{0}^{a} - \frac{b}{a} \left[ax - \frac{x^2}{2} \right]_{0}^{a} \\
&= \frac{b}{a} \left[\frac{a^2}{2}\sin^{-1}1\right] - \frac{b}{a} \left[a^2 - \frac{a^2}{2}\right] \\
&= \frac{ab}{2} \frac{\pi}{2} - ba \left(\frac{1}{2}\right) = \frac{ab}{4} (\pi - 2) \text{ sq. units} \\
&= \frac{ab}{2} \frac{\pi}{2} - ba \left(\frac{1}{2}\right) = \frac{ab}{4} (\pi - 2) \text{ sq. units} \\
&= \frac{3}{2} \frac{\pi}{2} + ba \left(1, \sqrt{3}\right) \text{ is } x + \sqrt{3}y = 4\n\end{aligned}
$$

and equation of normal at $(1, \sqrt{3})$ is $y = x\sqrt{3}$.

$$
\therefore \text{ Required area}
$$
\n
$$
= \int_{0}^{1} x\sqrt{3} dx + \int_{1}^{4} \frac{4-x}{\sqrt{3}} dx
$$
\n
$$
= \sqrt{3} \left[\frac{x^{2}}{2} \right]_{0}^{1} + \frac{1}{\sqrt{3}} \left[4x - \frac{x^{2}}{2} \right]_{1}^{4}
$$
\n
$$
= \sqrt{3} \times \frac{1}{2} + \frac{1}{\sqrt{3}} \left[4(4-1) - \frac{1}{2}(16-1) \right] = \frac{\sqrt{3}}{2} + \frac{3\sqrt{3}}{2} = 2\sqrt{3} \text{ sq. units}
$$

31. We have, $y = 2x - x^2 \implies y = x^2 - 2x$ $\Rightarrow -y + 1 = x^2 - 2x + 1 \Rightarrow -(y - 1) = (x - 1)^2$ Clearly it represents a parabola opening downwards whose vertex is (1, 1) and cuts *x-*axis at (0, 0) and (2, 0). The rough sketch of the curve is given below :

$$
= \left[x^2 - \frac{x^3}{3} \right]_0^2 = 4 - \frac{8}{3} = \frac{4}{3}
$$
 sq. units

32. We have given the equation of curve

 $y = \sqrt{a^2 - x^2} \implies y^2 = a^2 - x^2$

 $\Rightarrow y^2 + x^2 = a^2$, a circle with centre (0, 0) and radius *a* Thus the required area = area of the shaded region

$$
\begin{aligned}\n&= \int_0^a \sqrt{a^2 - x^2} \, dx \\
&= \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a \\
&= \left[0 + \frac{a^2}{2} \sin^{-1} (1) - 0 - \frac{a^2}{2} \sin^{-1} (0) \right] = \frac{\pi a^2}{4}\n\end{aligned}
$$

33. We have, $y = x - 1$, if $x - 1 \ge 0$

 \therefore Required area

$$
\begin{aligned}\n&=\int_{0}^{2} 1 dx - \left[\int_{0}^{1} (1-x) dx + \int_{1}^{2} (x-1) dx \right] \\
&= [x]_{0}^{2} - \left[x - \frac{x^{2}}{2} \right]_{0}^{1} - \left[\frac{x^{2}}{2} - x \right]_{1}^{2} = 2 - \frac{1}{2} - \frac{1}{2} = 1 \text{ sq. unit}\n\end{aligned}
$$

 \mathcal{Y}_\spadesuit

 $y=mx$
 $y^2 = 16x$

34. We have, $y^2 = 16x$, a parabola with vertex (0, 0) and line $y = mx$.

$$
\therefore \text{ Required area}
$$
\n
$$
= \int_{0}^{16/m^2} (\sqrt{16x} - mx) dx = \frac{2}{3}
$$
\n
$$
\Rightarrow \left[4 \times \frac{2}{3} x^{3/2} - m \left(\frac{x^2}{2} \right) \right]_{0}^{16/m^2} = \frac{2}{3}
$$
\n
$$
\Rightarrow \frac{8}{3} \times \frac{64}{m^3} - \frac{m}{2} \frac{256}{m^4} = \frac{2}{3} \Rightarrow \frac{1}{m^3} \left[\frac{512}{3} - 128 \right] = \frac{2}{3}
$$
\n
$$
\Rightarrow m = 4
$$

35. Given equations are
$$
y = \frac{3x^2}{4}
$$
 ...(i)

and
$$
3x - 2y + 12 = 0
$$
 $\Rightarrow y = \frac{3x + 12}{2}$...(ii)
Solving (i) and (ii), we get

 $= 27$ sq. units.

36. We have, $y = 4x + 5$, $y = 5 - x$ and $4y = x + 5$ The rough sketch of the lines is shown in the figure.

Here, equation of line AB is $y = 4x + 5$, equation of line *AC* is *y* = 5 – *x* and equation of line *BC* is $y = \frac{x+5}{4}$

The intersection point of line *AB* and *AC* is at *A*(0, 5). Similarly, the intersection point of line *AB* and line *BC* is at *B*(–1, 1) and the intersection point of line *AC* and *BC* is at *C*(3, 2).

$$
\therefore \text{ Required area} = \int_{-1}^{0} (4x + 5) dx + \int_{0}^{3} (5 - x) dx - \int_{-1}^{3} \frac{x + 5}{4} dx
$$

$$
= \left[2x^{2} + 5x \right]_{-1}^{0} + \left[5x - \frac{x^{2}}{2} \right]_{0}^{3} - \frac{1}{4} \left[\frac{x^{2}}{2} + 5x \right]_{-1}^{3}
$$

$$
= 0 - (2 - 5) + \left(15 - \frac{9}{2} \right) - \frac{1}{4} \left[\left(\frac{9}{2} + 15 \right) - \left(\frac{1}{2} - 5 \right) \right]
$$

$$
= 3 + \frac{21}{2} - \frac{1}{4} \left[\frac{39}{2} + \frac{9}{2} \right]
$$

= 3 + \frac{21}{2} - 6 = \frac{21}{2} - 3 = \frac{15}{2} sq. units
37. Given, $y = |x + 1| + 1$
 $\therefore y = \begin{cases} x+2 & \text{if } x \ge -1 \\ -x & \text{if } x < -1 \end{cases}$
We now draw the lines: $y = 0, x = 3, x = -3$ and

 $y = x + 2$ if $x \ge -1$...(i) $y = -x$ if $x < -1$...(ii)

Lines (i) and (ii) intersect each other at $(-1, 1)$

38. The given curve is $x^2 = 4y$...(i) and line is $x = 4y - 2$...(ii)

L

4 2

 $\overline{}$

1

2

Solving (i) and (ii), we get $(x + 2) = x^2$ \Rightarrow $x^2 - x - 2 = 0 \Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = 2, -1$ Thus the points of intersection of the given curve and line are *A* − $\left(-1, \frac{1}{4}\right)$ $\frac{1}{4}$ and *B* (2, 1) \therefore Required area $=\int_{-2}^{2} \left(\frac{x+2}{4}\right) dx - \int_{-2}^{2} \frac{x^2}{4} dx = \int_{-2}^{2} \left(\frac{x}{4} + \frac{1}{2}\right) dx$ l λ \overline{a} $\int_{-1}^{2} \left(\frac{x+2}{4} \right) dx - \int_{-1}^{2} \frac{x^2}{4} dx = \int_{-1}^{2} \left(\frac{x}{4} + \frac{1}{2} - \frac{x^2}{4} \right) dx$ 1 $\int_{1}^{1} (4 \t -1)^{3} \frac{1}{4} \t 4 \t -\t 1 \t 4 \t 2 \t 4$ $\frac{2}{2}(r+2)$ $\frac{2}{3}r^2$ 1 $\frac{2}{3}r^2$ $\frac{2}{3}(r + 1)$ r^2 1 2 $=\frac{1}{t}$ $\overline{}$ $\overline{}$ $+\frac{1}{2}[x]_{-1}^{2}-\frac{1}{4}$ $\overline{}$ $\overline{}$ $-\frac{1}{2}x\bigg[-1-\frac{1}{4}\bigg]\bigg[-3\bigg]$ 1 1 1 2 2 $\frac{2}{-1} - \frac{1}{4} \left[\frac{x^3}{2} \right]$ $\left[\frac{x^2}{2}\right]^2 + \frac{1}{2} [x]_{-1}^2 - \frac{1}{2} \left[\frac{x^3}{2}\right]^2$

L

4 3

J

−

1

$$
= \frac{1}{8}[4-1]+\frac{1}{2}[2+1]-\frac{1}{12}[8+1]
$$

= $\frac{3}{8}+\frac{3}{2}-\frac{3}{4}=\frac{3}{2}[\frac{1}{4}+1-\frac{1}{2}]=\frac{3}{2}[\frac{3}{4}]=\frac{9}{8}$ sq. units
39. The given curves are $y = x^2$...(i)

$$
y = |x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}
$$
...(ii)

Their points of intersection are *A*(1, 1), *O*(0, 0) and *B*(–1, 1).

 \therefore Required area

$$
=2\int_{0}^{1} (x-x^{2})dx = 2\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1} = 2\left[\frac{1}{2}-\frac{1}{3}\right] = \frac{1}{3}
$$
 sq. unit.

40. We have curves,
$$
y = \frac{1}{\sqrt{3}} x
$$
 ...(i)

and
$$
x^2 + y^2 = 16
$$
 ...(ii)

Curves (i) and (ii) intersect each other at $(2\sqrt{3}, 2)$ and $(-2\sqrt{3}, -2)$.

\ Required area = Area of region *OBAO* = area D*OBC* + area of region *BCAB*

$$
= \int_{0}^{2\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{2\sqrt{3}}^{4} \sqrt{16 - x^2} dx
$$

$$
= \left[\frac{x^2}{2\sqrt{3}} \right]_{0}^{2\sqrt{3}} + \left[\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \left(\frac{x}{4} \right) \right]_{2\sqrt{3}}^{4}
$$

$$
x \leftarrow 0
$$

$$
= \int_{C/\sqrt{3}, 0}^{2\sqrt{3}} dx
$$

$$
=2\sqrt{3}+8\left(\frac{\pi}{2}\right)-2\sqrt{3}-\frac{8\pi}{3}
$$

$$
=\frac{12\pi-8\pi}{3}=\frac{4\pi}{3}
$$
 sq. units